

Craniosynostosis Panel Sequencing and Deletion/Duplication Analysis

CRANIOSYNOSTOSIS PANEL GENE LIST

ALPL, ALX4, ASXL1, CDC45, CYP26B1, EFNB1, ERF, FGFR1, FGFR2, FGFR3, GLI3, IFT122, IFT43, IL11RA, MASP1, MEGF8, MSX2, P4HB, POR, RAB23, RECQL4*, SEC24D, SKI, TCF12, TGFBR1, TGFBR2, TMCO1, TWIST1*, WDR35, ZIC1 *deletion/duplication testing not included

CLINICAL FEATURES

Craniosynostosis is a condition characterized by premature ossification of one or more of the cranial sutures of the skull resulting in abnormal head growth and shape. The prevalence is approximately 1 in every 2,000-2,500 births.¹ Craniosynostosis (CS) has been classified into two main groups: non-syndromic and syndromic. Nonsyndromic craniosynostosis (NCS) accounts for 70-75% of cases and occurs as an isolated congenital anomaly. NCS is characterized by the sutures involved and includes sagittal (40-58%), metopic (~25%), unicoronal (~15%), bicoronal (~7-8%), and lamboid (1-3%).^{1,2,3} In 25-30% of cases, craniosynostosis presents as part of a genetic syndrome with varying clinical features and inheritance. Clinical features associated with syndromic craniosynostosis may include facial dysmorphism, developmental delays, hand or foot abnormalities, vision problems, brain malformations, and hearing loss.^{1,2}

In part due to the growth restrictions made by the fused sutures, intracranial pressure sometimes develops in patients with craniosynostosis. Increased intracranial pressure most commonly affects individuals with multiple closed sutures and syndromic patients; however, there have been cases of increased intracranial pressure when only one suture has fused.² Increased intracranial pressure can lead to headaches, visual impairment, sleeping difficulties, and intellectual disability.^{1,4,5}

GENETICS

There are currently over 180 different syndromes that involve craniosynostosis.⁶ The more common genes associated with syndromes where craniosynostosis is the predominant phenotype include FGFR1, FGFR2, FGFR3, TWIST1, EFNB1, MSX2, and RAB23.¹ Other genes such as FBN1, POR, TGFBR1, and TGFBR2 are associated with syndromes where craniosynostosis is not a major clinical feature or has reduced penetrance.¹ Pathogenic variants in FGFR2 account for approximately 32% of cases of syndromic craniosynostosis followed by FGFR3 (25%), TWIST1 (19%), and EFNB1 (7%).⁷ The majority of craniosynostosis cases are associated with autosomal dominant inheritance with half of these cases occurring de novo.⁷ However, autosomal recessive inheritance is also observed and pathogenic variants in EFNB1 associated with craniofrontonasal syndrome are X-linked dominant.

TEST METHODS

Using genomic DNA from the submitted specimen, the complete coding regions and splice site junctions of the genes on this panel are enriched using a proprietary targeted capture system developed by GeneDx for next-generation sequencing with CNV calling (NGS-CNV). The enriched targets are simultaneously sequenced with paired-end reads on an Illumina platform. Bi-directional sequence reads are assembled and aligned to reference sequences based on NCBI RefSeq transcripts and human genome build GRCh37/UCSC hg19. After gene specific filtering, data are analyzed to identify sequence variants and most deletions and duplications involving coding exons. For the REQL4 and TWIST1 genes, sequencing but not deletion/duplication analysis is performed. Alternative sequencing or copy number detection methods are used to analyze regions with inadequate sequence or copy number data. Reportable variants include pathogenic variants, likely pathogenic variants and variants of uncertain significance. Likely benign and benign variants, if present, are not routinely reported but are available

GeneDz

upon request.

TEST SENSITIVITY

The clinical sensitivity of this panel depends in part on the patient's clinical phenotype. Approximately 45% of individuals with a clinical diagnosis of craniosynostosis (syndromic and non-syndromic combined) have a genetic cause.⁶ Syndromic craniosynostosis has an identifiable genetic cause in 75-80% of cases.³ The clinical sensitivity for FGFR-related craniosynostosis syndromes is greater than 99%. Clinical sensitivity for TWIST1 variants related to Saethre-Chotzen syndrome is approximately 68% and GLI3 variants related to Greig cephalopolysyndactyly is approximately 75%. The clinical sensitivity for ALPL for hypophosphastasia is approximately 95%.⁸ The sensitivity for the remaining genes on this panel is unknown at this time.

The technical sensitivity of sequencing is estimated to be > 99% at detecting single nucleotide events. It will not reliably detect deletions greater than 20 base pairs, insertions or rearrangements greater than 10 base pairs, or low-level mosaicism. The copy number assessment methods used with this test cannot reliably detect copy number variants of less than 500 base pairs or mosaicism and cannot identify balanced chromosome aberrations. Assessment of exon-level copy number events is dependent on the inherent sequence properties of the targeted regions, including shared homology and exon size.

Gene	Protein	Inheritance	Disease Associations
ALPL ⁸	ALKALINE PHOSPHATASE	AR	Infantile Hypophosphatasia
		AD,AR	Odontohypophosphatasia
ALX4 ⁹⁻¹¹	ARISTALESS-LIKE 4, MOUSE,	AR	Frontonasal dysplasia 2
	HOMOLOG OF	AD	Parietal Foramina 2
			Craniosynostosis 5 (susceptibility to)
ASXL1 ¹²⁻¹³	ADDITIONAL SEX COMBS-LIKE 1	AD	Bohring-Opitz syndrome
CDC45 ¹⁴	CELL DIVISION CYCLE 4	AR	Meier-Gorlin syndrome 7
CYP26B1 _{3,15}	CYTOCHROME P450, SUBFAMILY XXVIB, POLYPEPTIDE 1	AR	Craniosynostosis with radiohumeral fusions and other skeletal and craniofacial anomalies
EFNB1 ¹⁶	EPHRIN B1	XLD	Craniofrontonasal dysplasia
ERF ¹⁷⁻¹⁸	ETS2 REPRESSOR FACTOR	AD	Craniosynostosis 4

< - \ <		(6-)-	100	
	010			5
	en			2
			-	
				5

FGFR1 ¹⁹	FIBROBLAST GROWTH FACTOR RECEPTOR 1	AD	Pfeiffer syndrome Jackson-Weiss syndrome Trigonocephaly 1
FGFR2 ¹⁹	FIBROBLAST GROWTH FACTOR RECEPTOR 2	AD	Antley-Bixler syndrome Apert syndrome Beare-Stevenson cutis gyrata syndrome Bent bone dysplasia Crouzon syndrome Jackson-Weiss syndrome Pfeiffer syndrome Saethre-Chotzen syndrome Craniosynostosis, non-specific
FGFR3 ¹⁹	FIBROBLAST GROWTH FACTOR RECEPTOR 3	AD	Crouzon syndrome Muenke syndrome
GLI3 ²⁰	GLI-KRUPPEL FAMILY MEMBER 3	AD	Greig cephalopolysyndactyly syndrome
IFT122 ²¹⁻²²	INTRAFLAGELLAR TRANSPORT 122, CHLAMYDOMONAS, HOMOLOG OF	AR	Cranioectodermal dysplasia 1
IFT43 ^{21,23}	INTRAFLAGELLAR TRANSPORT 43	AR	Cranioectodermal dysplasia 3
IL11RA ^{18,24}	INTERLEUKIN 11 RECEPTOR, ALPHA	AR	Craniosynostosis and dental anomalies
MASP1 25,26	MANNAN-BINDING LECTIN SERINE PROTEASE 1	AR	3MC syndrome 1
MEGF8 27,28	MULTIPLE EPIDERMAL GROWTH FACTOR-LIKE DOMAINS 8	AR	Carpenter syndrome 2
MSX2 ²⁹	MUSCLE SEGMENT HOMEOBOX, DROSOPHILA, HOMOLOG OF, 2	AD	Craniosynostosis 2
P4HB ^{30,31}	PROCOLLAGEN-PROLINE, 2- OXOGLUTARATE-4-DIOXYGENASE, BETA SUBUNIT	AD	Cole-Carpenter syndrome 1

POR ³²	CYTOCHROME P450 OXIDOREDUCTASE	AR	Antley-Bixler syndrome with genital anomalies and disordered steroidogenesis
RAB23 ³³⁻³⁴	RAS-ASSOCIATED PROTEIN RAB23	AR	Carpenter syndrome
RECQL4 ³⁵⁻ 36	RECQ PROTEIN-LIKE 4	AR	Baller-Gerold syndrome
SEC24D ³⁷	SEC24-RELATED GENE FAMILY, MEMBER D	AR	Cole-Carpenter syndrome 2
SKI ³⁸⁻³⁹	V-SKI AVIAN SARCOMA VIRAL ONCOGENE HOMOLOG	AD	Shprintzen-Goldberg syndrome
TCF12 40-41	TRANSCRIPTION FACTOR 12	AD	Craniosynostosis 3
TGFBR1 ⁴²⁻ ⁴³	TRANSFORMING GROWTH FACTOR- BETA RECEPTOR, I	AD	Loeys-Dietz syndrome 1
TGFBR2 ⁴³⁻ 44	TRANSFORMING GROWTH FACTOR- BETA RECEPTOR, II	AD	Loeys-Dietz Syndrome 2
TMCO1 ⁴⁵⁻	TRANSMEMBRANE AND COILED- COIL DOMAINS PROTEIN 1	AR	Craniofacial dysmorphism, skeletal anomalies, and mental retardation syndrome
TWIST1 16,47	TWIST, DROSOPHILA, HOMOLOG OF, 1	AD	Craniosynostosis 1 Robinow-Sorauf syndrome Saethre-Chotzen syndrome with or without eyelid anomalies
WDR35 21,48	WD REPEAT-CONTAINING PROTEIN 35	AR	Cranioectodermal dysplasia 2
ZIC1 3,49	ZIC FAMILY, MEMBER 1	AD	Craniosynostosis 6

Abbreviations:

AD - Autosomal dominant

AR - Autosomal recessive

XLD – X-linked Dominant

REFERENCES:

1 Passos-Bueno et al. (2008) Front Oral Biol 12 :107-43 (PMID: 18391498); 2 Kimonis et al. (2007) Semin Pediatr Neurol 14 (3):150-61 (PMID: 17980312); 3Lattanzi et al. (2017) Am. J. Med. Genet. A : (PMID: 28160402); 4 Bristol, RE et al (2004). Pediatric Neurology, 11, 262-267; 5 Choi JWC, Lim SO, & Shin HJ (2016). Korean Neurosurgical Society, 59, 197-203; 6 Agochukwu et al. (2012) Childs Nerv Syst 28 (9):1447-63 (PMID: 22872262); 7 Johnson et al. (2011) Eur. J. Hum. Genet. 19 (4):369-76 (PMID: 21248745); 8Mornet E, Nunes ME. Hypophosphatasia. 2007 Nov 20 [Updated 2016 Feb 4]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1150/ (PMID: 20301329); 9Yagnik et al. (2012) Hum. Mutat. 33 (12):1626-9 (PMID: 22829454); 10 Wilkie AOM, Mavrogiannis LA. Enlarged Parietal Foramina. 2004 Mar 30 [Updated 2012 Nov 8]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1128/; 11 Bertola et al. (2013) Am. J. Med. Genet. A 161A (3):600-4 (PMID: 23401352); 12 Zollino et al. (2017) Front Neurosci 11 :587 (PMID: 29093661); 13 Russell B, Tan WH, Graham JM Jr. Bohring-Opitz Syndrome. 2018 Feb 15. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK481833/; 14 Fenwick et al. (2016) Am. J. Hum. Genet. 99 (1):125-38 (PMID: 27374770); 15 Laue et al. (2011) American Journal Of Human Genetics 89 (5):595-606 (PMID: 22019272); 16 Ko et al. (2016) J Korean Neurosurg Soc 59 (3):187-91 (PMID: 27226847); 17 Chaudhry et al. (2015) Am. J. Med. Genet. A 167A (11):2544-7 (PMID: 26097063); 18 Wilkie et al. (2017) Curr. Opin. Pediatr. 29 (6):622-628 (PMID: 28914635); 19 Robin NH, Falk MJ, Haldeman-Englert CR. FGFR-Related Craniosynostosis Syndromes. 1998 Oct 20 [Updated 2011 Jun 7]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1455/ (PMID: 20301628); 20 Biesecker LG. Greig Cephalopolysyndactyly Syndrome. 2001 Jul 9 [Updated 2014 Jun 19]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1446/; 21 Arts H, Knoers N. Cranioectodermal Dysplasia. 2013 Sep 12 [Updated 2018 Apr 12]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from:

T: 1 (844) 241-1233 | F: 1 (201) 421-2020 | GeneDx.com 207 Perry Parkway | Gaithersburg, MD 20877 © 2021 GENEDX, INC. ALL RIGHTS RESERVED. GeneDz

https://www.ncbi.nlm.nih.gov/books/NBK154653/; 22 Walczak-Sztulpa et al. (2010) American Journal Of Human Genetics 86 (6):949-56 (PMID: 20493458); 23 Arts et al. (2011) J. Med. Genet. 48 (6):390-5 (PMID: 21378380); 24 Keupp et al. (2013) Mol Genet Genomic Med 1 (4):223-37 (PMID: 24498618); 25 Atik et al. (2015) Orphanet J Rare Dis 10 :128 (PMID: 26419238); 26 Sirmaci et al. (2010) Am. J. Hum. Genet. 87 (5):679-86 (PMID: 21035106); 27Twigg et al. (2012) American Journal Of Human Genetics 91 (5):897-905 (PMID: 23063620); 28 Twigg et al. (2015) Am. J. Hum. Genet. 97 (3):359-77 (PMID: 26340332); 29 Jabs et al. (1993) Cell 75 (3):443-50 (PMID: 8106171); 30 Rauch et al. (2015) Am. J. Hum. Genet. 96 (3):425-31 (PMID: 25683117); 31 Balasubramanian et al. (2018) J. Med. Genet. 55 (3):158-165 (PMID: 29263160); 32 Idkowiak J, Cragun D, Hopkin RJ, et al. Cytochrome P450 Oxidoreductase Deficiency. 2005 Sep 8 [Updated 2017 Aug 3]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1419/; 33 Jenkins et al. (2007) American Journal Of Human Genetics 80 (6):1162-70 (PMID: 17503333); 34 Zheng et al. (2017) Biosci. Rep. 37 (2): (PMID: 28104793); 35 Van Maldergem L, Piard J, Larizza L, et al. Baller-Gerold Syndrome. 2007 Aug 13 [Updated 2018 Apr 19]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1204/; 36 Van Maldergem et al. (2006) J. Med. Genet. 43 (2):148-52 (PMID: 15964893); 37 Garbes et al. (2015) Am. J. Hum. Genet. 96 (3):432-9 (PMID: 25683121); 38Greally MT. Shprintzen-Goldberg Syndrome. 2006 Jan 13 [Updated 2013 Jun 13]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1277/; 39 Yadav et al. (2016) Pan Afr Med J 23 :227 (PMID: 27761171); 40 Sharma et al. (2013) Nat. Genet. 45 (3):304-7 (PMID: 23354436); 41 Goos et al. (2016) Hum. Mutat. 37 (8):732-6 (PMID: 27158814); 42 Adès et al. (2006) American Journal Of Medical Genetics. Part A 140 (10):1047-58 (PMID: 16596670); 43 Loeys BL, Dietz HC. Loeys-Dietz Syndrome. 2008 Feb 28 [Updated 2018 Mar 1]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1133/; 44 Loeys et al. (2005) Nature Genetics 37 (3):275-81 (PMID: 15731757); 45 Xin et al. (2010) Proc. Natl. Acad.

https://www.ncbi.nlm.nin.gov/books/NBK1133/; 44 Loeys et al. (2005) Nature Genetics 37 (3):275-81 (PMID: 15731757); 45 Xin et al. (2010) Proc. Nati. Acad. Sci. U.S.A. 107 (1):258-63 (PMID: 20018682); 46 Pehlivan et al. (2014) Eur. J. Hum. Genet. 22 (9):1145-8 (PMID: 24424126); 47 Gallagher ER, Ratisoontom C, Cunningham ML. Saethre-Chotzen Syndrome. 2003 May 16 [Updated 2012 Jun 14]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1189/; 48 Lin et al. (2013) Am. J. Med. Genet. A 161A (11):2762-76 (PMID: 24123776); 49 Twigg et al. (2015) Am. J. Hum. Genet. 97 (3):378-88 (PMID: 26340333).