

# **Fatty Acid Oxidation Disorders Panel**

#### PANEL GENE LIST

ACADM, ACADS, ACADVL, CPT1A, CPT2, ETFA, ETFB, ETFDH, GLUD1, HADHA, HADHB, HMGCL, HMGCS2, SLC22A5 and SLC25A20

# **CLINICAL FEATURES**

Mitochondrial fatty acid oxidation is the principle pathway for energy production during times of increased energy demand such as fasting, illness and exercise. During fasting when glucose supplies are lowered, long-chain fatty acids stored as triglycerides in fat tissue are released by lipases and activated to acyl-CoA esters that are transported into the mitochondria via the carnitine shuttle. Once inside the mitochondria, several chain-length specific enzymes shorten acyl-CoAs, two carbon atoms at a time, via β-oxidation cycles. Long-chain compounds are metabolized at the inner mitochondrial membrane, while medium and short-chain compounds are metabolized in the mitochondrial matrix. Defects in this process result in disorders of fatty acid oxidation.

The clinical spectrum of fatty acid oxidation disorders ranges from asymptomatic individuals to severely affected patients with complications including hepatic encephalopathy, myopathy, cardiomyopathy, neuropathy and sudden death. In general, fatty acid oxidation disorders present in the following ways. The hepatic presentation is severe with onset in infancy or the neonatal period with hypoketotic hypoglycemia and a Reye-like syndrome. Also during infancy, patients may present with cardiac symptoms including dilated or hypertrophic cardiomyopathy and arrhythmias. Alternatively, patients can present with a milder, later onset disease characterized by exercise-induced myopathy and rhabdomyolysis. Some patients display combinations of these presentations. Additionally, fatty acid oxidation defects have been associated with sudden infant death.<sup>1</sup> Based on newborn screening programs in Australia, Germany and the United States the combined incidence of all fatty acid oxidation disorders is approximately 1 in 9,300.<sup>2</sup>

Most fatty acid oxidation disorders are associated with distinct plasma acylcarnitine profiles and enzymatic analysis is also available for many to determine the specific defect.<sup>3</sup> However, patients with mild or atypical disease presentations may show no abnormalities by acylcarnitine profile or enzymatic analysis.<sup>3</sup> Variant analysis may help to confirm the diagnosis and in some cases genotype/phenotype correlations are possible.<sup>4</sup>

## **INHERITANCE PATTERN/GENETICS**

Autosomal recessive, except GLUD1 which is autosomal dominant

#### **TEST METHODS**

Using genomic DNA extracted from the submitted specimen, the complete coding regions and splice site junctions of the genes tested are enriched using a proprietary targeted capture system developed by GeneDx for next-generation sequencing with CNV calling (NGS-CNV). The enriched targets are simultaneously sequenced with paired-end reads on an Illumina platform. Bi-directional sequence reads are assembled and aligned to reference sequences based on NCBI RefSeq transcripts and human genome build GRCh37/UCSC hg19. After gene specific filtering, data are analyzed to identify sequence variants and most deletions and duplications involving coding exons; however, technical limitations and inherent sequence properties effectively reduce this resolution for some genes. Alternative sequence or copy number detection methods are used to analyze or confirm regions with inadequate sequence or copy number data by NGS. Reportable variants include pathogenic variants, likely pathogenic variants and variants of uncertain significance. Likely benign and benign variants, if present, are not routinely reported but are available upon request.

The technical sensitivity of sequencing is estimated to be >99% at detecting single nucleotide events. It will not reliably detect deletions greater than 20 base pairs, insertions or rearrangements greater than 10 base pairs, or low-level mosaicism. The copy number assessment methods used with this test cannot reliably detect copy number variants of less than 500 base pairs or mosaicism and cannot identify balanced chromosome aberrations. Assessment of exon-level copy number events is dependent on the inherent sequence properties of the targeted regions, including shared homology and exon size.

## **CLINICAL SENSITIVITY**

Based on the sensitivity of variant analysis for the individual genes, it is estimated that this panel would detect a pathogenic variant in 75% to greater than 95% of patients with a fatty acid oxidation disorder due to pathogenic variants in one of the 15 genes.

| Gene   | Protein                                                                                            | Inheritance         | Disease Associations                                                                                                            |
|--------|----------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|
| ACADM  | Acyl-CoA dehydrogenase,<br>medium-chain                                                            | Autosomal Recessive | Medium-chain acyl-CoA<br>dehydrogenase (MCAD)<br>deficiency                                                                     |
| ACADS  | Acyl-CoA dehydrogenase,<br>short-chain                                                             | Autosomal Recessive | Short-chain acyl-CoA<br>dehydrogenase (SCAD)<br>deficiency                                                                      |
| ACADVL | Acyl-CoA dehydrogenase,<br>very long-chain                                                         | Autosomal Recessive | Very long-chain acyl-CoA<br>dehydrogenase (VLCAD)<br>deficiency                                                                 |
| CPT1A  | Carnitine<br>palmitoyltransferase I, liver                                                         | Autosomal Recessive | Carnitine palmitoyltransferase<br>IA deficiency                                                                                 |
| CPT2   | Carnitine<br>palmitoyltransferase II                                                               | Autosomal Recessive | Carnitine palmitoyltransferase II (CPT2) deficiency                                                                             |
| ETFA   | Electron transfer flavoprotein, alpha peptide                                                      | Autosomal Recessive | Glutaric aciduria II (GAII)                                                                                                     |
| ETFB   | Electron transfer flavoprotein, beta peptide                                                       | Autosomal Recessive | Glutaric aciduria II (GAII)                                                                                                     |
| ETFDH  | Electron transfer flavoprotein dehydrogenase                                                       | Autosomal Recessive | Glutaric aciduria II (GAII)                                                                                                     |
| GLUD1  | Glutamate dehydrogenase 1                                                                          | Autosomal Dominant  | Glutamate dehydrogenase I deficiency                                                                                            |
| HADHA  | Hydroxyacyl-CoA<br>dehydrogenase/3-ketoacyl-<br>CoA thiolase/enoyl-CoA<br>hydratase, alpha subunit | Autosomal Recessive | Long-chain 3-hydroxyacyl-CoA<br>dehydrogenase deficiency<br>(LCHAD)/ Mitochondrial<br>trifunctional protein (MTP)<br>deficiency |
| HADHB  | Hydroxyacyl-CoA<br>dehydrogenase/3-ketoacyl-<br>CoA thiolase/enoyl-CoA<br>hydratase, beta subunit  | Autosomal Recessive | Mitochondrial trifunctional protein (MTP) deficiency                                                                            |
| HMGCL  | 3-hydroxy-3-methylglutaryl-<br>CoA lyase                                                           | Autosomal Recessive | HMG CoA lyase deficiency (3-<br>Hydroxy-3-methylglutaryl CoA<br>lyase deficiency                                                |

GeneDz

# Test Information Sheet

|     | - (=-)- | 100 |
|-----|---------|-----|
| 010 |         |     |
|     |         |     |
|     |         |     |
|     |         |     |

| HMGCS2   | 3-hydroxy-3-methylglutaryl-<br>CoA synthase 2                                   | Autosomal Recessive | HMG-CoA synthase-2<br>deficiency (3-Hydroxy-3<br>methylglutaryl-CoA synthase 2<br>deficiency |
|----------|---------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------|
| SLC22A5  | Solute carrier family 22<br>(organic cation transporter),<br>member 5           | Autosomal Recessive | Primary/systemic carnitine deficiency                                                        |
| SLC25A20 | Solute carrier family 25<br>(carnitine/acylcarnitine<br>translocase), member 20 | Autosomal Recessive | Carnitine-acylcarnitine<br>translocase deficiency                                            |

#### **REFERENCES:**

1.Houten, S. and Wanders, R. (2010) J Inherit Metab Dis 33:469-477

2.Lindner, M., et al., (2010) J Inherit Metab Dis 33:521-526

3.Wanders et al., (2010) J Inherit Metab Dis 33:479-494

4.Spiekerkoetter, U. and Mayatepek, E., (2010) J Inherit Metab Dis 33:467-468

5.Bennett S.(2004) Pharmacogenomics 5:433-8