
PAGE 1 OF 5 

Sep-2021 

T: 1 (888) 729-1206 | F: 1 (201) 421-2010 | GeneDx.com 

207 Perry Parkway | Gaithersburg, MD 20877 

© 2021 GENEDX, INC. ALL RIGHTS RESERVED. 

OncoGeneDx: Hereditary Prostate Cancer Panel 

PANEL GENE LIST 
ATM, BRCA1, BRCA2, BRIP1, CHEK2, EPCAM*, HOXB13, MLH1, MSH2, MSH6, NBN, PALB2, PMS2, RAD51C, 
RAD51D, TP53 
*Testing includes sequencing and deletion/duplication analysis for all genes except EPCAM (del/dup only).

CLINICAL FEATURES 
In the general population, approximately 12.9% individuals will develop prostate cancer in their lifetime.1 Most 
cases of prostate cancer develop sporadically. Between 4.6% and 11.8% of prostate cancer cases are thought to 
be due to a hereditary predisposition.2,3 Factors that may be associated with hereditary prostate cancer include 
young age at diagnosis, multiple family members affected with prostate cancer and/or the association of prostate 
cancer with other cancers such as breast, ovarian, or pancreatic cancer. 

Germline BRCA2 pathogenic variants account for the majority of inherited prostate cancer cases.3 Pathogenic 
variants in ATM, BRCA1, BRIP1, CHEK2, HOXB13, NBN, PALB2, RAD51C, RAD51D, TP53 and the Lynch 
syndrome genes (MLH1, MSH2, MSH6, PMS2, and EPCAM) have also been linked to an increased risk of 
prostate cancer.3–9 Most of the genes on this panel are associated with well-described cancer syndromes and 
have published consensus management guidelines; however, HOXB13 has only recently been described in 
association with an increased cancer risk. Since the cancer risk for this gene is not yet well defined, no consensus 
guidelines for medical management are available. The cancers that are associated with pathogenic variants in 
each of the genes are outlined in the attached table. 

INHERITANCE PATTERN 
All of the genes on this panel are associated with an autosomal dominant cancer risk. Some of the genes on this 
panel are also associated with extremely rare conditions when inherited in an autosomal recessive fashion. The 
specifics of this inheritance are outlined in the table below. 

TEST METHODS 
Genomic DNA is extracted from the submitted specimen. For skin punch biopsies, fibroblasts are cultured and 
used for DNA extraction. This DNA is enriched for the complete coding regions and splice site junctions of the 
genes on this panel using a proprietary targeted capture system developed by GeneDx for next generation 
sequencing with CNV calling (NGS-CNV). The enriched targets are simultaneously sequenced with paired-end 
reads on an Illumina platform. Bi-directional sequence reads are assembled and aligned to reference sequences 
based on NCBI RefSeq transcripts and human genome build GRCh37/UCSC hg19. After gene specific filtering, 
data are analyzed to identify sequence variants and most deletions and duplications involving coding exons. 
Concurrent MSH2 Exons 1-7 Inversion analysis from NGS data is also performed. For EPCAM, 
deletion/duplication analysis, but not sequencing, is performed. Alternative sequencing or copy number detection 
methods are used to analyze or confirm regions with inadequate sequence or copy number data by NGS. 
Reportable variants include pathogenic variants, likely pathogenic variants and variants of uncertain significance. 
Likely benign and benign variants, if present, are not routinely reported but are available upon request.  

TEST SENSITIVITY  
The clinical sensitivity of sequencing and deletion/duplication analysis of the 16 genes included in the 
OncoGeneDx Hereditary Prostate Cancer Panel depends in part on the patient’s clinical phenotype and family 
history. In general, the sensitivity is highest for individuals with features suggestive of hereditary predisposition to 
prostate cancer as outlined above. DNA sequencing will detect nucleotide substitutions and small insertions and 
deletions, while NGS-CNV analysis, array CGH, or MLPA will detect exon-level deletions and duplications. These 
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methods are expected to be greater than 99% sensitive in detecting pathogenic variants identifiable by 
sequencing or CNV technology. 

Genetic testing using the methods applied at GeneDx is expected to be highly accurate. Normal findings do not 
rule out the diagnosis of a genetic disorder since some genetic abnormalities may be undetectable by this test. 
The methods used cannot reliably detect deletions of 20bp to 250bp in size, or insertions of 10bp to 250 bp in 
size. Sequencing cannot detect low-level mosaicism. The copy number assessment methods used with this test 
cannot reliably detect mosaicism and cannot identify balanced chromosome aberrations. Rarely, incidental 
findings of large chromosomal rearrangements outside the gene of interest may be identified. Regions of certain 
genes have inherent sequence properties (for example: repeat, homology, or pseudogene regions, high GC 
content, rare polymorphisms) that yield suboptimal data, potentially impairing accuracy of the results. False 
negatives may also occur in the setting of bone marrow transplantation, recent blood transfusion, or suboptimal 
DNA quality. In individuals with active or chronic hematologic neoplasms or conditions, there is a possibility that 
testing may detect an acquired somatic variant, resulting in a false positive result. As the ability to detect genetic 
variants and naming conventions can differ among laboratories, rare false negative results may occur when no 
positive control is provided for testing of a specific variant identified at another laboratory. The chance of a false 
positive or false negative result due to laboratory errors incurred during any phase of testing cannot be completely 
excluded. Interpretations are made with the assumption that any clinical information provided, including family 
relationships, are accurate. Consultation with a genetics professional is recommended for interpretation of results. 

Gene Protein Inheritance Disease Association 

ATM10–15 
SERINE-PROTEIN 
KINASE ATM 

AD Breast, colon & pancreatic cancer 

AR Ataxia telangiectasia 

BRCA116–26 
BREAST CANCER TYPE 1 
SUSCEPTIBILITY 
PROTEIN 

AD 

Hereditary Breast and Ovarian 
Cancer (HBOC) syndrome: breast, 
ovarian, pancreatic, prostate & 
endometrial serous cancer 

BRCA216–23,25,26 
BREAST CANCER TYPE 2 
SUSCEPTIBILITY 
PROTEIN 

AD 

Hereditary Breast and Ovarian 
Cancer (HBOC) syndrome: breast, 
ovarian, pancreatic, prostate, 
melanoma & endometrial serous 
cancer 

AR Fanconi anemia 

BRIP13,10,27,28 
FANCONI ANEMIA 
GROUP J PROTEIN 

AD Breast & ovarian cancer 

AR Fanconi anemia 

CHEK210,11,24,29–35 
SERINE/THREONINE-
PROTEIN KINASE CHK2 AD 

Breast, colon, prostate, gastric & 
thyroid cancer 

EPCAM36–41 
EPITHELIAL CELL 
ADHESION MOLECULE 

AD 

Lynch syndrome (LS): colorectal, 
endometrial, ovarian, gastric, 
pancreatic, biliary tract, urinary tract, 
small bowel, prostate & brain cancer, 
sebaceous neoplasms 

AR 
Constitutional mismatch repair 
deficiency syndrome 

HOXB1342–44 

HOMEOBOX PROTEIN 
HOX-B13 AD Prostate cancer 
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MLH136,38–41,45,46 
DNA MISMATCH REPAIR 
PROTEIN MLH1 

AD 

Lynch syndrome (LS): colorectal, 
endometrial, ovarian, gastric, 
pancreatic, biliary tract, urinary tract, 
small bowel, prostate & brain cancer, 
sebaceous neoplasms 

AR 
Constitutional mismatch repair 
deficiency syndrome 

MSH236–41,45,46 
DNA MISMATCH REPAIR 
PROTEIN MSH2 

AD 

Lynch syndrome (LS): colorectal, 
endometrial, ovarian, gastric, 
pancreatic, biliary tract, urinary tract, 
small bowel, prostate & brain cancer, 
sebaceous neoplasms 

AR 
Constitutional mismatch repair 
deficiency syndrome 

MSH636,38–41,45,47 
DNA MISMATCH REPAIR 
PROTEIN MSH6 

AD 

Lynch syndrome (LS): colorectal, 
endometrial, ovarian, gastric, 
pancreatic, biliary tract, urinary tract, 
small bowel, prostate & brain cancer, 
sebaceous neoplasms 

AR 
Constitutional mismatch repair 
deficiency syndrome 

NBN48–54 NIBRIN 
AD 

Breast & prostate cancer, non-
Hodgkin lymphoma 

AR Nijmegen breakage syndrome 

PALB210,55–60 
PARTNER AND 
LOCALIZER OF BRCA2 

AD Breast, pancreatic, & ovarian cancer 

AR Fanconi anemia 

PMS236,38–41,61,62 
MISMATCH REPAIR 
ENDONUCLEASE PMS2 

AD 

Lynch syndrome (LS): colorectal, 
endometrial, ovarian, gastric, 
pancreatic, biliary tract, urinary tract, 
small bowel, prostate & brain cancer, 
sebaceous neoplasms 

AR 
Constitutional mismatch repair 
deficiency syndrome 

RAD51C63–66 
DNA REPAIR PROTEIN 
RAD51 HOMOLOG 3 

AD Breast & ovarian cancer 

AR Fanconi anemia 

RAD51D63,64,67,68 
DNA REPAIR PROTEIN 
RAD51 HOMOLOG 4  

AD Breast & ovarian cancer 

TP5324,69–73 
CELLULAR TUMOR 
ANTIGEN P53  

AD 

Li-Fraumeni syndrome (LFS): 
breast cancer, sarcoma, brain 
cancer, hematologic 
malignancies, adrenocortical 
carcinoma, among others**  

Because of evolving and expanding phenotypes, this list of cancer/tumor types is not exhaustive. Gene‐specific 
risk for some of the cancers and other features listed are not well‐defined. 

*High overall risk of cancer: 75% lifetime risk for males to develop cancer, nearly 100% risk for females.
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Abbreviations: 
AD – Autosomal Dominant   
AR – Autosomal Recessive 

CGH – Comparative genomic hybridization 
MLPA – Multiplex ligation-dependent probe amplification 
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